Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-[(E)-2-(4-Methoxyphenyl)ethenyl]-1-methylquinolinium 4-bromobenzenesulfonate

In the title compound $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrSO}_{3}{ }^{-}$, the cation is almost planar. The benzene ring of the anion makes dihedral angles of $84.23(12)$ and $84.59(15)^{\circ}$, respectively, with the quinolinium group and the benzene ring of the cation. The cations and anions are arranged in an alternating onedimensional chain along the b axis, and these chains are interconnected through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions to form a three-dimensional network. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are also observed in the crystal structure.

Comment

Our ongoing interest in new nonlinear optical (NLO) materials (Rahman et al., 2003; Jindawong, Chantrapromma, Fun, Yu \& Karalai, 2005; Jindawong, Chantrapromma, Fun \& Karalai, 2005; Chantrapromma et al., 2005, 2006) led us to synthesize the title compound, (I), in order to explore its molecular behaviour and crystal structure. However, since second-order nonlinear effects require a non-centrosymmetric structure for the bulk material (Williams, 1984) and (I) crystallizes in a centrosymmetric space group, it cannot exhibit second-order NLO properties.

The asymmetric unit of (I) consists of a $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}^{+}$cation and a $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrSO}_{3}{ }^{-}$anion (Fig. 1). Bond lengths and angles are in normal ranges (Allen et al., 1987) and similar to those in some closely related structures, such as 2-[(E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1-methylquinolinium 4-methylbenzenesulfonate, (II) (Jindawong, Chantrapromma, Fun \& Karalai, 2005) and 2-[(E)-2-(3-hydroxy-4-methoxyphenyl)-ethenyl]-1-methylquinolinium 4-chlorobenzenesulfonate, (III) (Chantrapromma et al., 2006). In the cation, the quinolinium group (C9-C17/N1) is planar, with a maximum deviation from the plane of 0.054 (3) \AA for atom N1. Overall, the cation is almost planar, as indicated by the dihedral angle of $1.12(14)^{\circ}$ between the quinolinium group and the $\mathrm{C} 1-\mathrm{C} 6$ benzene ring. The H atoms attached to atoms C7 and C8 are mutually trans, so that the cation adopts an E configuration with a $\mathrm{C} 6-\mathrm{C} 7-$

Received 24 May 2006
Accepted 29 May 2006

[^0]
Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.048$
$w R$ factor $=0.112$
Data-to-parameter ratio $=21.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Figure 1
The asymmetric unit of (I), showing 80% probability displacement ellipsoids and the atomic numbering scheme.

Figure 2
The crystal packing of (I), viewed down the a axis. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions are shown as dashed lines.

C8-C9 torsion angle of 177.4 (4) ${ }^{\circ}$. The methoxy group deviates slightly from the plane of the benzene ring of the cation $\left[\mathrm{C} 19-\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4=-5.6(5)^{\circ}\right]$. In the asymmetric unit, the molecular planes of the cation and anion are almost perpendicular to each other, with a dihedral angle of $84.23(12)^{\circ}$ between the benzene ring of the anion and the quinolinium plane. This compares with 59.17 (9) ${ }^{\circ}$ in (II) and 48.97 (6) ${ }^{\circ}$ in (III). The angle between the benzene rings of the anion and cation is $84.59(15)^{\circ}\left[60.59(10)^{\circ}\right.$ in (II) and 51.63 (7) ${ }^{\circ}$ in (III)].

In the crystal structure, all the O atoms of the 4-bromobenzenesulfonate anion are involved in weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1 and Fig. 2). The cations and anions form alternating one-dimensional chains along the b axis. These chains are interconnected by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions to form a three-dimensional molecular network.
$\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are also observed and details are given in Table 1.

Experimental

Silver(I) 4-bromobenzenesulfonate (compound A) was synthesized as reported previously (Jindawong, Chantrapromma, Fun, Yu \& Karalai, 2005). 2-(4'-Methoxystyryl)-1-methylquinolinium iodide (compound B) was synthesized by refluxing a solution of $1,2-$ dimethylquinolinium iodide $(1.00 \mathrm{~g}, \quad 3.51 \mathrm{mmol})$, 4 -methoxybenzaldehyde $(0.43 \mathrm{ml}, \quad 3.51 \mathrm{mmol})$ and piperidine $(0.35 \mathrm{ml}$, $3.54 \mathrm{mmol})$, in a $1: 1: 1$ molar ratio, in methanol $(20 \mathrm{ml})$ for 7 h . The resulting solid was filtered off, washed with CHCl_{3} and recrystallized from $\mathrm{CH}_{3} \mathrm{OH}$, to give B as a green solid ($0.95 \mathrm{~g}, 67 \%$, mp. 498-499 K). The title compound, (I), was synthesized by mixing solutions of A $(0.09 \mathrm{~g}, 0.25 \mathrm{mmol})$ and $B(0.10 \mathrm{~g}, 0.25 \mathrm{mmol})$, each in hot MeOH (70 ml), which immediately gave a yellow mass of silver iodide. After stirring the mixture for 30 min , the silver iodide was removed and the resulting green-yellow solution was evaporated to yield a greenyellow solid. Single orange blocks of (I) were obtained by recrystallization from $\mathrm{MeOH}-\mathrm{EtOH}(2: 1 \mathrm{v} / \mathrm{v})$ at ambient temperature over several days (m.p. 539-540 K).

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}^{+} . \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{BrO}_{3} \mathrm{~S}^{-}$
$M_{r}=512.41$
Monoclinic, $P 2_{\mathrm{o}_{1}} / c$
$a=7.1945$ (1) А
$b=15.1542(2) \AA$
$c=19.6438$ (3) \AA
$\beta=90.960(1)^{\circ}$
$V=2141.40(5) \AA^{3}$

Data collection

Bruker SMART APEX2 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.415, T_{\max }=0.676$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.589 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=2.05 \mathrm{~mm}^{-1} \\
& T=100.0(1) \mathrm{K} \\
& \text { Block, orange } \\
& 0.52 \times 0.37 \times 0.21 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0369 P)^{2}\right. \\
& +4.0824 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=1.38 \mathrm{e}_{\mathrm{m}} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.57 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centroid of the C20-C25 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2$	0.93	2.54	3.436 (4)	162
C11-H11A \cdots O $4^{\text {i }}$	0.93	2.58	3.481 (4)	162
C13-H13A $\cdots \mathrm{O}^{\text {i }}$	0.93	2.52	3.382 (4)	155
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{O} 3^{\text {ii }}$	0.93	2.58	3.219 (4)	127
$\mathrm{C} 18-\mathrm{H} 18 \mathrm{C} \cdots \mathrm{O} 2{ }^{\text {iii }}$	0.96	2.32	3.252 (4)	165
$\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A} \cdots \mathrm{O} 4$	0.93	2.54	2.919 (4)	105
$\mathrm{C} 25-\mathrm{H} 25 A \cdots \mathrm{O} 4^{\text {iv }}$	0.93	2.29	3.083 (4)	142
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{Cg} 1$	0.93	2.87	3.655 (4)	142

All H atoms bound to C atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H , and $\mathrm{C}-$ $\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for CH_{3} atoms. The highest peak is located $1.15 \AA$ from H19C.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

This work was supported by the Thailand Toray Science Foundation (Science and Technology Research Grants). The authors also thank the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
Chantrapromma, S., Jindawong, B., Fun, H.-K., Anjum, S. \& Karalai, C. (2005). Acta Cryst. E61, o2096-o2098.

Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. \& Karalai, C. (2006). Acta Cryst. E62, o1802-o1804.
Jindawong, B., Chantrapromma, S., Fun, H.-K. \& Karalai, C. (2005). Acta Cryst. E61, o3237-o3239.
Jindawong, B., Chantrapromma, S., Fun, H.-K., Yu, X. L. \& Karalai, C. (2005). Acta Cryst. E61, o1340-o1342.
Rahman, A. A., Razak, I. A., Fun, H.-K., Saenee, P., Jindawong, B., Chantrapromma, S. \& Karalai, C. (2003). Acta Cryst. E59, o1798-o1800.
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Williams, D. (1984). Angew. Chem. Int. Ed. Engl. 23, 690-703.

[^0]: (C) 2006 International Union of Crystallography

 All rights reserved

